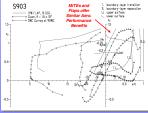


Lightweight, Low Power, Miniature Trailing-Edge Effector (MiTE) Actuator using Existing On-Blade Pressure Differentials

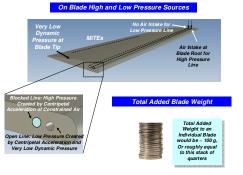
What are MiTEs?

- Minature Trailing-Edge Effectors (MiTEs) are an extension of a assive high-lift device, the Gurney Flap
- In rotorcraft, MiTEs have potential to improve:
 - · Rotor Performance

 - Increase lift to reduce retreating-blade stall Reduce compressibility effects on advancing side Tailor spanwise lift distribution to minimize power
 - Vibration Control
 - Spanwise & Azimuthal Lift Distribution


Comparison to Trailing Edge Flaps

- Trailing edge flaps have been proposed for individual blade control Flaps used to generate desired unsteady aerodynamic load at N/Rev, or 20-30 Hz
- MiTEs offer similar lift and moment performance benefits as trailing edge flaps, but:
 - Trailing edge flaps require high force actuators, typically piezoelectric-la · Heavy power amplification systems
 - Distributed MiTEs require dramatically lower actuation loads
 - Low voltage, no extra power amplification systems required MiTEs are insensitive to compressibility effects



nance of MiTE vs. Flap

On-Blade Implementation

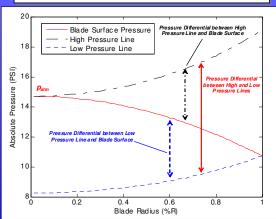
- rotor to actuate the MiTEs
- High pressure would be created using the centripetal acceleration of the air within the blade
- Low pressure would be created by utilizing the very low dynamic
- Because dynamic pressure varies with velocity squared, this pressure would be lower than inboard dynamic pressures, enabling effective MITE actuation
- Total added weight to an individual blade would not exceed 100 g, or
 - This is approximately 100 times less than trailing edge flap actu when accounting for onboard power amplification

Principle Investigator

Dr. Joseph Szefi Invercon 112 W. Foster Ave State College, PA 16801 joe.szefi@invercon.net Phone: 814.876.3609 Fax: 814.876.3609

MiTE Aerodynamic Effects

- Aerodynamic tests have been conducted in PSU's wind tunnel
- MiTEs significantly increase pressure on the lower surface upstre
- Downstream of the flap, strong favorable pressure grad a trailing edge pressure lower than the baseline airfoil
- On upper surface, MiTEs postpone start of pressure recovery by 20%, causing longer regions of laminar flow
- Maximum lift gains are achieved in large part due to lower-surface pressure increases upstream of the MiTE location



Invercon's Pressure Actuated MiTE Concept

- on-blade pressure differentials
 - Simple, dramatically low weight penalty design
 - High pressure and low pressure lines connected to micro, three-way pressure valves
 - Valves semi-actively toggle between high and low pressures at des frequency (up to 100 Hz) to actuate MiTEs
 - Low Voltage: Current valves require only 5V No extra power amplifications systems need

Predicted On-Blade Pressure Generation

